Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474141

RESUMO

Given the significant involvement of galectins in the development of numerous diseases, the aim of the following work is to further study the interaction between galectin-3 (Gal3) and the LPS from Pseudomonas aeruginosa. This manuscript focused on the study of the interaction of the carbohydrate recognition domain of Gal3 with the LPS from Pseudomonas aeruginosa by means of different complementary methodologies, such as circular dichroism; spectrofluorimetry; dynamic and static light scattering and evaluation of the impact of Gal3 on the redox potential membranes of Escherichia coli and P. aeruginosa cells, as well as ITC and NMR studies. This thorough investigation reinforces the hypothesis of an interaction between Gal3 and LPS, unraveling the structural details and providing valuable insights into the formation of these intricate molecular complexes. Taken together, these achievements could potentially prompt the design of therapeutic drugs useful for the development of agonists and/or antagonists for LPS receptors such as galectins as adjunctive therapy for P. aeruginosa.


Assuntos
Galectina 3 , Lipopolissacarídeos , Humanos , Galectinas , Pseudomonas aeruginosa
2.
ACS Chem Biol ; 19(2): 483-496, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38321945

RESUMO

Human sialic-acid-binding immunoglobulin-like lectin-9 (Siglec-9) is a glycoimmune checkpoint receptor expressed on several immune cells. Binding of Siglec-9 to sialic acid containing glycans (sialoglycans) is well documented to modulate its functions as an inhibitory receptor. Here, we first assigned the amino acid backbone of the Siglec-9 V-set domain (Siglec-9d1), using well-established triple resonance three-dimensional nuclear magnetic resonance (NMR) methods. Then, we combined solution NMR and molecular dynamic simulation methods to decipher the molecular details of the interaction of Siglec-9 with the natural ligands α2,3 and α2,6 sialyl lactosamines (SLN), sialyl Lewis X (sLeX), and 6-O sulfated sLeX and with two synthetically modified sialoglycans that bind with high affinity. As expected, Neu5Ac is accommodated between the F and G ß-strands at the canonical sialic acid binding site. Addition of a heteroaromatic scaffold 9N-5-(2-methylthiazol-4-yl)thiophene sulfonamide (MTTS) at the C9 position of Neu5Ac generates new interactions with the hydrophobic residues located at the G-G' loop and the N-terminal region of Siglec-9. Similarly, the addition of the aromatic substituent (5-N-(1-benzhydryl-1H-1,2,3-triazol-4-yl)methyl (BTC)) at the C5 position of Neu5Ac stabilizes the conformation of the long and flexible B'-C loop present in Siglec-9. These results expose the underlying mechanism responsible for the enhanced affinity and specificity for Siglec-9 for these two modified sialoglycans and sheds light on the rational design of the next generation of modified sialoglycans targeting Siglec-9.


Assuntos
Simulação de Dinâmica Molecular , Ácido N-Acetilneuramínico , Humanos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Polissacarídeos/metabolismo , Espectroscopia de Ressonância Magnética , Ligantes
3.
Nat Commun ; 14(1): 3496, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311743

RESUMO

Sialic acid-binding Ig-like lectin 15 (Siglec-15) is an immune modulator and emerging cancer immunotherapy target. However, limited understanding of its structure and mechanism of action restrains the development of drug candidates that unleash its full therapeutic potential. In this study, we elucidate the crystal structure of Siglec-15 and its binding epitope via co-crystallization with an anti-Siglec-15 blocking antibody. Using saturation transfer-difference nuclear magnetic resonance (STD-NMR) spectroscopy and molecular dynamics simulations, we reveal Siglec-15 binding mode to α(2,3)- and α(2,6)-linked sialic acids and the cancer-associated sialyl-Tn (STn) glycoform. We demonstrate that binding of Siglec-15 to T cells, which lack STn expression, depends on the presence of α(2,3)- and α(2,6)-linked sialoglycans. Furthermore, we identify the leukocyte integrin CD11b as a Siglec-15 binding partner on human T cells. Collectively, our findings provide an integrated understanding of the structural features of Siglec-15 and emphasize glycosylation as a crucial factor in controlling T cell responses.


Assuntos
Integrinas , Linfócitos T , Humanos , Cristalização , Epitopos , Glicosilação
4.
JACS Au ; 3(1): 204-215, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711084

RESUMO

Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation. The three-dimensional structure of Siglec-8 and the fragment antigen binding (Fab) portion of the anti-Siglec-8 mAb 2C4, solved by X-ray crystallography, reveal that 2C4 binds close to the carbohydrate recognition domain (V-type Ig domain) on Siglec-8. We have also deduced the binding mode of a high-affinity analogue of its sialic acid ligand (9-N-napthylsufonimide-Neu5Ac, NSANeuAc) using a combination of NMR spectroscopy and X-ray crystallography. Our results show that the sialoside ring of NSANeuAc binds to the canonical sialyl binding pocket of the Siglec receptor family and that the high affinity arises from the accommodation of the NSA aromatic group in a nearby hydrophobic patch formed by the N-terminal tail and the unique G-G' loop. The results reveal the basis for the observed high affinity of this ligand and provide clues for the rational design of the next generation of Siglec-8 inhibitors. Additionally, the specific interactions between Siglec-8 and the N-linked glycans present on the high-affinity receptor FcεRIα have also been explored by NMR.

5.
Angew Chem Int Ed Engl ; 61(18): e202201432, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35191576

RESUMO

The interaction of the SARS CoV2 spike glycoprotein with two sialic acid-containing trisaccharides (α2,3 and α2,6 sialyl N-acetyllactosamine) has been demonstrated by NMR. The NMR-based distinction between the signals of those sialic acids in the glycans covalently attached to the spike protein and those belonging to the exogenous α2,3 and α2,6 sialyl N-acetyllactosamine ligands has been achieved by synthesizing uniformly 13 C-labelled trisaccharides at the sialic acid and galactose moieties. STD-1 H,13 C-HSQC NMR experiments elegantly demonstrate the direct interaction of the sialic acid residues of both trisaccharides with additional participation of the galactose moieties, especially for the α2,3-linked analogue. Additional experiments with the spike protein in the presence of a specific antibody for the N-terminal domain and with the isolated receptor binding and N-terminal domains of the spike protein unambiguously show that the sialic acid binding site is located at the N-terminal domain.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Sítios de Ligação , Galactose , Humanos , Ácido N-Acetilneuramínico/química , SARS-CoV-2 , Ácidos Siálicos/química , Glicoproteína da Espícula de Coronavírus/química , Trissacarídeos
6.
Cells ; 9(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333862

RESUMO

The sialic acid-binding immunoglobulin-type of lectins (Siglecs) are receptors that recognize sialic acid-containing glycans. In the majority of the cases, Siglecs are expressed on immune cells and play a critical role in regulating immune cell signaling. Over the years, it has been shown that the sialic acid-Siglec axis participates in immunological homeostasis, and that any imbalance can trigger different pathologies, such as autoimmune diseases or cancer. For all this, different therapeutics have been developed that bind to Siglecs, either based on antibodies or being smaller molecules. In this review, we briefly introduce the Siglec family and we compile a description of glycan-based molecules and antibody-based therapies (including CAR-T and bispecific antibodies) that have been designed to therapeutically targeting Siglecs.


Assuntos
Terapia de Alvo Molecular , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Anticorpos/metabolismo , Humanos , Nanopartículas/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química
7.
Angew Chem Int Ed Engl ; 59(52): 23763-23771, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32915505

RESUMO

The glycan structures of the receptor binding domain of the SARS-CoV2 spike glycoprotein expressed in human HEK293F cells have been studied by using NMR. The different possible interacting epitopes have been deeply analysed and characterized, providing evidence of the presence of glycan structures not found in previous MS-based analyses. The interaction of the RBD 13 C-labelled glycans with different human lectins, which are expressed in different organs and tissues that may be affected during the infection process, has also been evaluated by NMR. In particular, 15 N-labelled galectins (galectins-3, -7 and -8 N-terminal), Siglecs (Siglec-8, Siglec-10), and C-type lectins (DC-SIGN, MGL) have been employed. Complementary experiments from the glycoprotein perspective or from the lectin's point of view have permitted to disentangle the specific interacting epitopes in each case. Based on these findings, 3D models of the interacting complexes have been proposed.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Lectinas Tipo C/química , Modelos Moleculares , Polissacarídeos/química , Receptores de Coronavírus/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Glicosilação , Células HEK293 , Humanos , Lectinas Tipo C/metabolismo , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/metabolismo , Ligação Proteica , Receptores de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
ACS Cent Sci ; 5(9): 1554-1561, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31572782

RESUMO

Protein N-glycosylation stands out for its intrinsic and functionally related heterogeneity. Despite its biomedical interest, Glycoprofile analysis still remains a major scientific challenge. Here, we present an NMR-based strategy to delineate the N-glycan composition in intact glycoproteins and under physiological conditions. The employed methodology allowed dissecting the glycan pattern of the IgE high-affinity receptor (FcεRIα) expressed in human HEK 293 cells, identifying the presence and relative abundance of specific glycan epitopes. Chemical shifts and differences in the signal line-broadening between the native and the unfolded states were integrated to build a structural model of FcεRIα that was able to identify intramolecular interactions between high-mannose N-glycans and the protein surface. In turn, complex type N-glycans reflect a large solvent accessibility, suggesting a functional role as interaction sites for receptors. The interaction between intact FcεRIα and the lectin hGal3, also studied here, confirms this hypothesis and opens new avenues for the detection of specific N-glycan epitopes and for the studies of glycoprotein-receptor interactions mediated by N-glycans.

9.
Mol Genet Metab ; 121(4): 329-335, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28673550

RESUMO

Inborn defects of cholesterol biosynthesis are metabolic disorders presenting with multi-organ and tissue anomalies. An autosomal recessive defect involving the demethylating enzyme C4-methyl sterol (SC4MOL) has been reported in only 4 patients so far. In infancy, all patients were affected by microcephaly, bilateral congenital cataracts, growth delay, psoriasiform dermatitis, immune dysfunction, and intellectual disability. Herein, we describe a new case of SC4MOL deficiency in which a 19-year-old Italian male was affected by bilateral congenital cataracts, growth delay and learning disabilities, behavioral disorders and small stature, but not microcephaly. Our patient had abundant scalp dandruff, without other skin manifestations. Analysis of the blood sterol profile showed accumulation of C4-monomethyl and C4-dimethyl sterols suggesting a deficiency of the SC4MOL enzyme. Sequencing of the MSMO1 gene (also known as the "SC4MOL" gene) confirmed mutations in each allele (c.731A>G, p.Y244C, which is already known, and c.605G>A, p.G202E, which is a novel variant). His father carried c.731A>G mutation, whereas his mother carried c.605G>A. Thus, the combination of multiple skills and methodologies, in particular, blood sterol profiling and genetic analysis, led to the diagnosis of a new case of a very rare defect of cholesterol biosynthesis. Consequently, we suggest that these two analyses should be performed as soon as possible in all undiagnosed patients affected by bilateral cataracts and developmental delay.


Assuntos
Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/genética , Esteróis/sangue , Alelos , Catarata/etiologia , Colesterol/metabolismo , Deficiências do Desenvolvimento/etiologia , Família , Humanos , Deficiência Intelectual/etiologia , Erros Inatos do Metabolismo Lipídico/sangue , Erros Inatos do Metabolismo Lipídico/complicações , Masculino , Microcefalia , Oxigenases de Função Mista/sangue , Mutação , Esteróis/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...